Rochester Institute of Technology
B. Thomas Golisano College Of

Computing and Information Sciences

Master of Science in Information Sciences and Technologies

~ Project Approval Form ~

Student Name: Rima Kandalgaonkar

Project Title: Automatic Tag Suggestion For Stackoverflow Questions Using
Machine Learning

Project Area(s): Application Dev. Database Website Dev.

(\ primary area) Game Design HCI eLearning
Networking Project Mngt. Software Dev.
Multimedia System Admin. Informatics
Geospatial Visual Analytics

~ MS Project Committee ~

Name Signature Date

Erik Golen

Chair

John-Paul Takats

Committee Member

Automatic Tag Suggestion For
Stackovertlow Questions Using
Machine Learning

By: Rima Kandalgaonkar

Project submitted in partial fulfillment of the requirements for the

degree of Master of Science in Information Sciences and
Technologies

Rochester Institute of Technology
B. Thomas Golisano College of

Computing and Information Sciences

Department of Information Sciences and Technologies

07-Nov-2020

Table of Content

List of Figures
List of Tables ..

A DSTIACT oottt
L. INtrOAUCHION oottt e e e e e,

2. Literature R
3. Data Explor

G0 1
ation and Preparation ...

3.1 Dataset o e
3.2 Dataset EXploration c.ooiiiiiiiii i 10
33 Data Preprocessing and Cleaning —coooiiiiiiiiiiiiiiiiiii e, 14
34 Feature EXtraction —ciiiiiiiiiii e 15
4. Solution Approach and Results ... 15
4.1 LD A 15
4.1.1 Data Preprocessing for LDA ..o 16
4.1.2 LDA Implementationc.evueetiiriinieiienniaeeneeaneenanenans 16
4.1.3 LDA Evaluationc.coooiiiiiiiiiiiiiiiiii e 17
4.1.4 LDA OptiMIZationcc.eevnrieinreiieeieeaieeeieeneeeeeeiniennenns 19
4.2 Classification iueiuiiti i 24
4.2.1 Data Preprocessing for Classification cooeieviiininen. 24
4.2.2 ML Algorithm Implementation ..., 25
4.2.3 ML Model Evaluation —oooiiiiiiiiiiiiiiiiie e 26
4.2.4 Performance TUNINGooiuiiiiiiiiiii e, 27
5. CONCIUSION Lottt e 32
REfeIeNCe ...ooeiti 33
N 0 157 416 34

List of Figures

Figure 1. The form to enter question in stackoverflow (taken from stackoverflow.com)
Figure 2. World cloud for the most used tags for tags.csv file

Figure 3. Ratio of missing values per column from merged dataset

Figure 4. Most common tags vs count

Figure 5. Number of scores vs number of questions

Figure 6. Number of tags per question

Figure 7. Number of answers per question
Figure 8. Time vs number of questions reported
Figure 9. Gensim LDA generated output

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
. GridSearchCV results for LinearSVC model
Figure 19.

Figure 18

Figure 20.
Figure 21.

Interactive chart for the topics extracted using LDA

Number of topics vs coherence score

LDA model with optimised parameters

LDA output topics with word probabilities

Actual vs predicted Tags for optimized LDA model with unseen input text
Parameter settings for TfidfVectorizer

GridSearchCV parameter tuning output

Best estimated parameters for linearSVC using GridSearchCV

AUC-ROC curve for LinearSVC model
Number of questions vs Tags for test and predicted data
Number of questions vs Number of Tags for test and predicted data

List of Tables

Table 1. The data fields in Question.csv

Table 2. The data fields in Answers.csv

Table 3. The data fields in Tags.csv

Table 4. Manually recognised topics and labeled accordingly
Table 5. Coherence score for different values of eta and alpha
Table 6. Topics obtained from LDA after parameter tuning
Table 7. Performance metrics for ML algorithms

Table 8. Performance metrics for ML algorithms with ClassifierChain
Table 9. Performance metrics for LinearSVC after parameter tuning

Abstract

The stack overflow requires users to manually determine relevant tags for the entered question. It
is a time-consuming process and requires a wide knowledge of the topic to identify correct tags
to direct the questions to the experts for quick resolution. The goal of this study is to develop a
model that will suggest appropriate tags for the entered context in the question for achieving
better classification of the Tags on stackoverflow. Two approaches are proposed to develop
automatic tag suggestion systems. In the first approach, an unsupervised learning algorithm-
Latent Dirichlet Allocation (LDA) is implemented to generate topics from stackoverflow
question dataset. The second approach is supervised classification model implementation for tag
suggestion. Data exploration, analysis and preprocessing are performed to understand the dataset
better and produce good quality data for modelling. The LDA model is evaluated and optimized
based on hyperparameter and coherence score which represents interpretability of the generated
model. For classification, logistic regression, random forest, Support Vector Machine (SVM)
and Linear Support Vector Classification (SVC) are used to discover the best suited model. The
model evaluation is performed using accuracy, precision, recall, F-1 score, hamming loss and
Area Under Curve-Receiver Operating Characteristics (AUC-ROC) curve. The optimization and
parameter tuning of LinearSVC generated based results for tag prediction using classification.

Keywords: topic modelling, classification, multilable, tag prediction, LDA, Logistic Regression,
Random Forest, SVM, LinearSVC

1. Introduction

Question and answer (Q&A) platforms play a very important role in everyone's life. These
platforms are the places over the internet where people can gain knowledge about everything by
posting questions, retrieving relevant information, answering the posted questions etc. There are
thousands of websites which provide Q&A platforms to gain answers and knowledge to the
world. There are various technical websites/ forums which contain millions of Q&A such as
Quora, Instructables, stackoverflow. These are few examples of platforms that are helpful for
hobbyists, coders and developers to get help and find valuable resources. The categorization of
Q&A is one of the most important elements to retrieve or ask for relevant information in an
efficient way. The coding Q&A platforms such as stackoverflow uses tags to categorize
questions and related information [1]. Figure 1. Shows form to ask questions for the relevant
solution from stackoverflow. As shown in Figure 1. tag represents the type or the domain of the
question which has to be entered accurately to get an answer to the question.

= stackoverflow Products
Ask a public question
Title
Be specific and im

B 7 & &6 {} & B EEE= Hiie formatting tip

Links Images ShlingHeaders Lists Blockquotes Code HTML More [2

Figure 1. The form to enter question in stackoverflow (taken from stackoverflow.com)

The tags have a huge importance in the Q&A platforms as it states topics in the information or
question and properly defined tags are easy to direct questions to the expert and active users
which ensures quick resolution. Tags can also be useful to find similar types of information that
is relevant to the topic. Currently, the process of entering Q&A involves manual tagging, and the
user has to determine proper tags for the content which is getting entered. It is time-consuming
and requires a wide knowledge of the topics to identify correct tags before entering. The auto

tagging approach can help users to solve mentioned problems by providing various tags related
to the entered context. To make this process more friendly and improve the efficiency of the
tagging process, a tag suggestion system is implemented using machine learning (ML)
algorithms for the dataset of stackoverflow.

This document consists of various details of implementation of the auto-tagging system. It covers
details such asLiterature Review(existing solutions and their findings),Data Exploration and
preparation, Solution approach and conclusion.

Problem Statement: Manual tagging while entering questions and related information on
stackoverflow is time-consuming and needs wide knowledge of the topic for quick and relevant
resolution. The stackoverflow is a valuable resource for coders and software engineers and the
information related to Q&A is categorized using various tags to make it easily accessible.
Currently, while entering Q&A users have to determine relevant tags for the entered question
and the process is manual which takes more time and requires domain knowledge. The auto
tagging approach can help users to solve mentioned problems by providing various tags related
to the entered context. The stackoverflow uses defined tags to direct questions to expert and
active users which ensures quick resolution [1].

Project Objectives: The goal of this project is to develop a model that will suggest appropriate
tags for the entered context in the question for achieving better classification of the content on
stackoverflow.

e Data Extraction, exploration and data cleaning to understand the data, the quality of
questions and the Tags using various visualizations. Organization of data in consistent
format, feature selection for ML algorithm implementation.

e Implementing machine learning approaches such as topic modelling and classification
and identifying the best suitable algorithms to handle user input questions on stack
overflow for the Tag suggestion system.

e Performance evaluation through standard metrics and optimize performance by parameter
tuning for the trained models for efficient tag recommendation.

The report is organised as follows, section 2 contains literature review which elaborates prior
work done in the area of tagging and data analysis using various ML techniques. Section 3
describes the data exploration and preparation including data cleaning, text pre processing and
feature extraction. Section 4 focuses on two ML approaches, topic modeling using LDA and
classification using Logistics Regression, Random Forest, Support vector Machine, Linear
Support Vector Classifier. It includes details regarding its implementation, evaluation, results
and performance optimization. Section 6 includes results and conclusions derived from this
project.

2. Literature Review

This section highlights prior work done in the area of tagging and analysis of the data using
various ML techniques. The approaches mentioned implement various methods to handle textual
information, its preprocessing and to improve performance of the system.

In [2], Smrithi et al. have proposed a hybrid auto-tagging methodology to develop an
auto-tagging system. Their system is capable of detecting programming languages and
performing classification for questions. The code snippets are used to detect programming
languages and various data features such as tokenization and pattern matching are used to train
Multinomial Naive Bayes Classifiers for identification of the programming languages. The
linear Support Vector Machine (SVM) classifier model is used to predict the tags from the
content of the question. Various feature vectors built from training examples are used to train
SVM classifiers. By combining these two approaches they have achieved 72% of accuracy for
the auto-tagging system.

In [3], Alrashedy et al. have implemented a programming language prediction system using
Natural Language Processing. For implementation, they have used two ML algorithms Random
Forest Classifier and the XGBoost in the sense of achieving better accuracy. In this paper authors
have focused on various questions to predict the programming languages by using a combination
of two input parameters textual information (questions) and code snippets. They have achieved
91.1% accuracy by combining textual information and code snippet to train and test the
classifier. Whereas for training and testing the classification model by making use of one of the
input parameters from textual information or code snippets leads to the system accuracy of
81.1% and 77.7% respectively.

Logan et al. [4] have proposed tag recommendation models for stackoverflow by introducing an
algorithm named NetTagCombine. The NetTagCombine is an extension to the currently
available ML algorithms for Q&A tag recommendation systems. They have added a new
component called Network-Based Ranking to the existing algorithms. The Network-Based
Ranking consists of the structure of the networks in the stackoverflow data which is used to
obtain additional information related to the post. The addition of this new parameter to the
existing tag recommendation algorithm has achieved better tag recommendation accuracy. Their
study reveals that network information and analysis can be beneficial to obtain data for the
resemblance present in the content of websites.

Miltiadis et al. [5] have proposed a method to analyze stackoverflow questions to find topic, type
and code related to the textual information. They have used topic modeling to find the topics.
The Latent Dirichlet Allocation (LDA) with MALLET is used to train the textual information

and find text topics. Various natural language processing techniques are used for data processing
before applying it to the model. By using LDA authors have answered various questions, such as
variation in the question types and its dependency on programming languages, question type
dependency on programming constructs and identifiers etc.

In [6], Michael Byrne has implemented a hashtag predicting system using Bayesian probabilistic
models. The model which is used for hashtag prediction is based on ACT-R’s declarative
memory retrieval. In the implementation of methodology, the model is trained using % of the
dataset to calculate the strength of dependency between post information and tags. Logistic
regression is used for calibration of the parameters and for performance optimization. The
classification accuracy of 65% is achieved with this implementation.

In [7], Z. Yue et al. have proposed a recommendation system called End-to-end Tag-based
Recommendation System (ETRS) for verbal reasoning question dataset. In this paper, Natural
Language Processing (NLP) tools are used to perform analysis on textual information and extract
the keywords as tags. To improve user satisfaction about using this system they have addressed
three important issues, new items, new users and new systems. They have suggested an accuracy
matching approach to add tags for users and improve the overall performance of the system. The
paper presents results and effectiveness of this system as compared to item based or user based
recommendation systems as it does not require huge data for better performance.

For this study both supervised and unsupervised approaches are explored and considered for
implementation and analyze the quality of tags suggested. All the aspects of the dataset such as
Title, questions body and Code snippets are considered for the study as each element has its own
unique weight which tells about the Tags whereas many researches focus on only code snippets
to detect programming languages. This study not only focuses on implementation of various ML
algorithms, but also emphasises on performance evaluation and optimization in depth.

3. Data Exploration and Preparation

3.1 Dataset

For the implementation of automatic tag suggestion system, dataset is considered with specific
type and format which should include details such as specific Id for each question entered,
textual information in the form of Q&A, predefined tags and the timestamps. Each detail has its
own importance in the dataset such as predefined tags with the body (textual information such as
Q&A is important for training different ML models, time stamps are important for data
exploration etc. The dataset considered for this implementation consists of stackoverflow Q&A.

The data is collected from Kaggle.com[8]. It includes three CSV formatted files: Questions.csv,
Answers.csv and Tags.csv.
Table 1. The data fields in Question.csv

ield Name I])escription [Details
Id A unique id assigned to each question |A numerical value
OwnerUserld [A unique id assigned to each user A numerical value
CreationDate [Question creation date The data between 1Aug2008 to 190c¢t2016
ClosedDate |Question closed date The data between 1Aug2008 to 190ct2016
Score Usefulness of question Score in the range -42 to 4718
Title Question title Text data
Body Question body Text data

Table 2. The data fields in Answers.csv

ield Name [Details Variable Type
Id A unique id assigned to each question |A numerical value
OwnerUserld |A unique id assigned to each user 468798 unique values
CreationDate |Question creation date The data between 1Aug2008 to 190c¢t2016
Parentld Parent question id A numerical value
Score Usefulness of answer Score in the range -42 to 4718
Body Question body Text data

Table 3. The data fields in Tags.csv

Field Name [Details Variable Type
Id A unique id assigned to each question |A numerical value
Tag Tags assigned to each question 14883 unique tags

The features used for implementation of automatic tag suggestions are Title, Body, Tags, and
Score. The dataset contains three files and the fields are mentioned in Table 1, 2 and 3 Data
contains 1264204 questions from 630908 users with 2014375 number of answers. The file
Tags.csv includes 37034 number of tags with assigned question Id.

3.2 Data Exploration
Data exploration is a crucial step in any data analytics project. It is an initial investigation over
data and it helps to understand it in detail. Data visualization is an effective way to present and

understand data in a graphical format by choosing the right visuals such as graphs, pie charts,
maps etc. Figure 2 represents word cloud for most used 50 tags.

10

php mysql

visual studio

javascript jquery

Figure 2. World cloud for the most used tags for tags.csv file

Observations from dataset:

e The figure 3. shows missing values for each field in the dataset after combining
Question.csv and Tags.csv. The ClosedDate column has most missing values ~ 90% from
our merged dataset. The ClosedDate and OwnerUsedld columns are removed as they are

not significant while training the models.

Ratio of missing values per columns

Tags

Eody

Title

Score
Coseanate -
CreationDate
Cwnerlserid I

Id

0.0 0z 04 06 DE

Figure 3. Ratio of missing values per column from merged dataset

e There are no duplicate entries in the dataset.
e Finding total number of tags - 224129 number of total tags
e Finding unique tags - 14883 unique tags

11

600000 1

Figure 4. shows top 50 tags and its frequency to get an idea about the tags from the
dataset. The C# tag frequency is ~ 7000 and XML tag frequency is ~ 500. The most of
the questions which are available in the dataset are related to C#, java tags.

7000

6000

5000

4000

Counts

3000

2000

1000

[
iphone 4

objective-c 4
niby-on-rails 4

uuuuu

=5
git 4
asp.net-mvc 4
scala
jsen 4
ot+11
rEgex -
visual-studio 4
htmiS
05X 4
swift
spring
=ml

linux 4
multithreading 4

c#
java |
hkml 4
sql-server
node. js |
angularjs
django 4
performance o
string 4
wcode

arrays
wipf

eclipse
haskell
windows 4

javascript
o+t
php
jquery |
net
ios

android
python 4
algorithm
database |
unit-testing

Samples

Figure 4. Most common tags vs count

The score column can be used to extract good quality questions and answers from the
dataset. The figure 5. shows the number of questions assigned with particular score
values. For example, more than 500000 questions have a score of 0.

10

500000 1
> 400000
300000 1
200000 1
100000
0 I . I — — —
0 2 4 6

score

Figure 5. Number of scores vs number of questions

12

e There are multiple tags assigned to each question. In figure 6. We can see there are more
than 350000 questions which have 3 tags assigned to them. We can use this data to find
tags vs questions dependency and how particular a tag represents to that question.

Questions vs Their tags count

350000 - Avegra question 3

300000 -

10Ns

250000 1

200000 -

150000 1

Number of Quest

100000 -

50000 4

D -
1 2 3 4 5
Tags count

Figure 6. Number of tags per question

e The figure 7. shows relation between questions and answers and displays question vs
answer count. On average each question has 2 answers.

Questions vs Their Answer count

EOO000 4
500000 Avegrage answers per question 2
400000 1
300000 4

200000 4

Number of Questicns

100000 4

Answer count

Figure 7. Number of answers per question

e Timing analysis is also important to understand the number of questions reported vs time.
This analysis can also help us to understand the specific tags which are used over the
time, increase or decrease in the use of specific tags. Figure 8. shows the number of
questions/ Title reported over the time.

13

0000 4

15000 4

100040 4

5000 4

—— e —— .
2L 2010 2011 MLz A3 M4 2015 216
datetirme

Figure 8. Time vs number of questions reported
3.3 Data Preprocessing and Cleaning

The dataset contains three files and the fields are mentioned in Table 1,2,3. Data contains
1264204 questions from 630908 users with 2014375 number of answers. The file Tags.csv
includes 37034 number of tags with assigned question Id. For implementation of various ML
algorithms, the raw data has to go through various data cleaning and preprocessing processes.
Question body and title has various unwanted characters such as <p>, </p>\n\n<p> etc. Those
are html tags and are removed for further data processing with the help of python library. The
text in the Body and Title column are standardized by converting text into lower case, converting
short form to full forms (I've > I have), removing scripting related commands (\n, \s etc.),
removing blank spaces and other special characters. Performed Tokenization on the Body
column data. Tokenization helped to separate each word and can be used to perform further
cleaning individually. Furthermore all the punctuations such as
(M"#$%&\' ()*+,./:;<=>2@[\]* " {|}~) are removed from the Body column using python libraries.

In the preprocessing include stop word removal, stemming, and part-of-speech tagging tasks.
The stop word removal process is the most commonly used preprocessing process to remove
words such as a, the, an, as, and, etc. Stop words carry little semantic value and are less useful
for information retrieval and therefore removing helps in querying better and saves processing
time while searching. Stop words are removed using python NLTK (natural language toolkit)
library.

Stemming is used to convert various terms to their root form before indexing. It is a technique

used to reduce feature numbers [9]. For eg. words such as organize, organizes, organizing are
reduced to base form organiz. Therefore, chances of retrieval of correct information increased, so

14

whenever the recall needs to be improved stemming is useful. Stemming is performed using
Porter’s algorithm in python.

3.4 Feature Extraction

The questions title and body are unstructured data in the form text and have to be converted into
matrix representation before applying any ML model. The term frequency- inverse document
frequency (TF-IDF) vectorization is used for this purpose. The TF-IDF is used to extract features
and represent it in the matrix format. The vectors are used to represent a document where each
dimension represents its feature. The term frequency represents the number of times the term
occurs in the document, and the document frequency is the number of the document in datasets
that contain a specific term. TF-IDF representation is performed by using the tfidfVectorizer
library in python. The questions title and body are converted to vectors with each term assigned a
tf-idf score. The minimum document frequency and maximum document frequency parameters
are used to limit the number of features to extract the relevant terms and remove the very
frequent terms which are less significant.

4. Solution Approach and Results

The tag suggestion can be implemented in various ways. The first approach proposed is LDA
topic modeling technique [11]. The topic modeling is an unsupervised ML algorithm that uses
the Natural Language Processing (NLP) technique which extracts the meaning of the text data in
the form of topics. The topic analysis techniques give insight about huge text by giving output as
topics that are used most frequently in the data. Topic modeling enables topics extraction from
user questions and understands each question content and assigns it appropriate tags.

Another approach is to implement classification models using various ML algorithms.
Classification is supervised data mining technique used to assign each point in the dataset a
specific target or class. The classification model for tag suggestions will be a multi-label
classification as each question can be assigned to more than one tag. The multi-label
classification can be implemented using One-vs-Rest technique and Classifier Chain technique
[12]. This method is complex and requires high processing power. From the study of existing
methodologies, few ML algorithms are implemented which are best suitable for multi-label
classification purposes.

4.1 LDA (Latent Dirichlet Allocation)

The topic modeling is the first approach used for tag prediction. With the topic modeling we can
discover topical patterns from large datasets, differentiate the set of data according to extracted
topics and the dataset can be summarized and organized accordingly. The Latent Dirichlet

15

Allocation (LDA) is the most commonly used topic modeling technique. LDA provides text
classification in a dataset to a particular topic[11]. LDA 1is a generative probabilistic model that
represents documents as a mixture of topics composed of words with different probabilities.
LDA is based on a generative process that assumes each document is made up of randomly
chosen topic distribution. Each word in the document is picked up by a randomly selected topic
over the vocabulary.

4.1.1 Data Preprocessing for LDA

All adjectives, verbs are completely removed using Part of Speech (POS) tags and only nouns
which carry important information are passed as an input to LDA to improve the quality of
topics. The PoS tags are used to describe a lexical group of words such as verbs, adjectives, and
nouns [10]. The PoS tagging can extract nouns as nouns tend to be more significant in deriving
topics than adjectives or any other parts of speech. POS can be implemented using NTKL pos
tagger library in python.

4.1.2 LDA Implementation

The GenSim library is used to apply LDA in Python. The text in the Body and Title column is
converted into dictionaries and corpus with word mappings to their ids for LDA. The LDA is
implemented using default parameters with a number of topics as 25. The number of topic
parameter (num_topics) must be predetermined and specified while running LDA. LDA provides
topics, where each topic has a combination of words. The words under each topic have a certain
weight which represents the importance of that word in particular topic.

Probability Word probability Word

Topic No

Topic No 1

Topic No 14

Topic No 8

Topic No 6

Figure 9. Gensim LDA generated output

16

Figure 9. Shows part of the output generated by gensim LDA implementation. It displays each
topic with its topic number and top 10 words in each topic with its word-probability distribution.
All the topics as per the number of topic (num_topics) parameter are displayed. The number of
words to be displayed per topic can be adjusted as per requirement. Table 4. shows the results for
extracted topics in tabular format for GenSim topic modeling implementation showing top 20
words for each topic. The topics are identified manually from the word distribution and labeled
them accordingly, the identified labels are shown in red text below each topic-word list. For eg.
Topic #06 has words such as git, push, branch, master, github etc and therefore labeled as
version control. Similarly Topic #17 has words such as row, column, queri, databas, select, table
etc which is related to Database/SQL.The limitation is categorising different programming
languages as they have many similarities such as C, C++, java, python.

Table 4. Manually recognised topics and labeled accordingly

Topic # 05 Topic # 06 Topic # 10 Topic # 11 Topic # 14 Topic # 16 Topic # 17 Topic # 18 Topic # 20 Topic # 21 Topic # 22 Topic # 23 Topic # 24

messag app request file int class row function version list line view control
devic io connect date bar name column div project number import button user
log video server path char method queri var applic item print event form
info git servic directori foo type databas script sourc option python item page
node push client td def properti data html packag group command menu model
stack notif respons tr float call tabl style depend count modul activ post
port branch address folder foo instanc id text configur element output cell json
root play password gem product object record id studio order pip icon view
phone xcode http content val paramet sql javascript compil loop script posit action
bootstrap chrome header download self interfac select input load case hello click data
implemen
call alloc user format function t mysql element build rang call show field
callback iphon access xml price refer db page use collect def label end
debug chang li pdf end declar insert src instal iter world void cach
constructo
report migrat secur datetim return r creat content spring break exit textview statu
app master login upload translat base store jqueri support join run style valid
method player authent marker x2 field end js app sort cat scroll rout
crash repositori host export x1 void result consolelogdevelop select msg action scope
eandroidr
untim canva email asset mask pass transact css java sum perl fragment rail
trace simul web header tupl creat server bodi librari rule end navig compon
driver github send ioexcept po attribut field type target sequenc execut context mvc
Android, Version Server-Cli XML, Programm Programm Database, Programm CLI,
iOS, App Control |ent HTML ing ing saL HTML ing Tool [SQL Python HTML, CSSJavaScript
4.1.3 LDA Evaluation

The evaluation of topic modelling is very challenging as it is an unsupervised technique and does
not have a standard comparable matrix. One of the measures used to find the effectiveness of the
lda model is coherence score. The model evaluation is done using coherence score which

17

indicates performance of selected topic modeling techniques. Topic coherence score is a measure
of human interpretability of topic models. It represents relative distance(similarity) between the
high probability words within a topic. It helps to identify and distinguish the topic semantic using
the cosine similarity. The C v is a gensim library parameter which is used to calculate the
coherence score. Its value lies between 0 and 1. The LDA model does not consider the labels

(tags) while training the models. It only considers documents (questions) to generate the models
and find topic distribution across the documents. The obtained coherence score for the base LDA

model with default parameters is.

Coherence Score: 0.475267

The interactive chart of topics is created using the pyLDAvis package in python. Figure 10.
shows a screenshot of the interactive chart for the topics extracted from the LDA.

Slide to adjust relevance metric:2) =
| |

‘ Previous Topic ‘ Next Topic || Clear Topic
=1 0.0 02 04 08 08 10

Selected Topic: | 1

Intertopic Distance Map (via multidimensional scaling) Top-30 Most Relevant Terms for Topic 1 (20.9% of tokens)
10,000 20,000 30,000 40,000 50,000 60,000

]

use

.,.‘
]

code

work [
way [
¥ data
sxairol [
probier |
tri

question

someth

chan,
2o fncton
solut
& 12 5 case
PCA ook [N
8 creat [
get [
time
thank [NIIE
23 8 thing (NG
2 help [N
1 13 document _
edit
b resut [
idea
need [N
2419 issu
anyon [
part I
point [N

Marginal topic distribution
Overall term frequency

I :stimated term frequency within the selected topic

Figure 10. Interactive chart for the topics extracted using LDA

The bubbles in the visualized chart represent individual topics. The overlapped bubbles represent
the words which are common in two topics. In figure 10. The bubble number 5, 12 and 21 etc.
are unique topics which are not overlapping or very less number of words are overlapped with
any other topic. The generated chart is interactive, so hovering over the topic gives statistics such

as overall term frequency and estimated term frequency within the selected topic.

18

4.1.4 LDA Optimization

To optimize the LDA model performance and get more recognizable topics it is important to
increase sample size and reduce Tag numbers along with parameter tuning. The methods
followed for optimization are:

e Increasing Data Sample and reduce number of Tags

Increased the sample size by filtering more questions in preprocessing. To improve the quality of
topic extraction 20 Tags were selected. The tags selected are : Java, Python, SQL, mysql, html,
css, git, asp.net, vb.net, bash, excel, eclipse, mangodb, andriod, ios, iphone, matlab, api, ruby,
ruby-on-rails.

e Finding an optimum number of topics

LDA optimization includes various steps such as finding an optimum number of topics for a
given dataset and performing hyperparameter tuning. LDA analysis was performed using gensim
LDA mallet to find coherence scores for different numbers of topics. It is a time-consuming
process as the LDA model needs to be implemented multiple times to find coherence scores for a
different number of topics by changing the number of topics from 2 to 30 with a fixed step size
of 4. Figure 11. Shows the obtained number of topics vs respective coherence score plot. The
maximum coherence score is obtained for 18 numbers of topics. For further fine tuning 18 topics
were selected.

Coherence Score vs. Topics

0.55
0/5238 0.5242
o 050 0.5183
9
?
o) 0.4927
Q
|
o
4]
g 0.45 0.47
0.434
0.40
2 6 10 14 18 22 26 30

Number of Topics

Figure 11. Number of topics vs coherence score

19

e LDA parameter tuning

In LDA each document (questions) is made up of different topics and each topic consists of
various words having different weights. The Gensim LDA has two parameters, alpha and eta
which can be tuned to obtain the best results. These parameters can be used to control the
number of topics in a document (Document-topics density) and the number of words in a topic
(Topic-word density). The alpha controls document-topic density i.e. the combination of topics
for any given document. If alpha is lower, the documents will likely have less number of topic
combinations. If alpha is more, the documents will likely have more number topic combinations.
The eta controls topic-word density i.e. the distribution of words per topic. The lower value of
eta indicates that the topics will likely have less number of word combinations. The higher eta
indicates that the topics will likely have more words.

For finding optimum value for alpha and eta for 18 topics, the LDA is implemented on 75% of
the corpus to save processing time with multiple combinations of alpha and eta. Table 5. shows
the coherence score for 18 topics with different alpha and eta values. The maximum value of the
coherence score is obtained at alpha= 0.01 and eta= 0.9. LDA is implemented again with an
optimum value for parameters: number of topics = 18, alpha = 0.01, eta =0.9.

Table 5. Coherence score for different values of eta and alpha

alpha eta 0.01 0.31 0.61 0.9
0.01 0.4570 0.5915 0.5967 0.6275
0.31 0.4840 0.5762 0.5752 0.5953
0.61 0.5121 0.5442 0.5600 0.5793

0.9 0.5398 0.5560 0.5847 0.5876

Figure 12. Shows the LDA model with optimum parameters using gensim LDA. Figure 13.
Shows the output of gensim LDA with top 5 topics distribution having top 5 words and
probability assigned to each word.

20

lda = ldamodel.LdaModel (corpus=corpus,
id2word=id2word,
num_topics=18,
random_state=100,
passes=16@,
per word topics=True,
alpha=0.01,
eta=0.9099)

print(lda.print topics())
doc lda = lda[corpus]

Figure 12. LDA model with optimised parameters

matlab™ + 0.031*"size

61*"1ine" + 0.040*"script™ + 0

EY SF 0. DR2=neg] " g 0 2

Figure 13. LDA output topics with word probabilities

The obtained coherence score for the LDA model with optimum value for parameters with 100%
corpus is.

Coherence Score: 0.60158
The coherence score is improved from 0.4752 to 0.6016 (26.6% increase) after parameter tuning.

Table 6. shows the results for extracted topics after performing parameter tuning and displays top
20 words for each topic. The topics are identified from the word distribution and labeled them
accordingly, the identified labels are shown in red text. For eg. Topic #12 has words such as git,
push, branch, master, github etc and therefore labeled as version control, git. Similarly Topic #07
has words such as row, column, queri, databas, select, table etc which is related to
Database/SQL. The topics obtained are better to interpret and categorize with different labels
(Tags). The topics generated after fine tuning are better to interpret than the base model.

21

Table 6. Topics obtained from LDA after parameter tuning

B
uppomyau
UE]
Alas-jualjd
ylomiau
$59908
150d
150y
158l
oldde

apod

duy

gam

uos|
suodsal

1013
elep
193UU0D
PIINES
walp
Bessaw
1sanbal
ide
JETNEY]

L]

‘|9oxa
alf1s
Mol
fem
apod

Aejdsip

p
unoibiyaeq

way

nuswl
qel
oqe|

Bl

x0q
Bueya
leq
el
10]02
IETE]
uonng
JEENTS
1122

ayspeaids eosdijoe

‘aaql
12b1p)
Bngap
21jdde

1581

piing
Inpow

|eisul

|idwos

Beyoed
pAp(

2In0sal

nbiyuod
puadsp
ojul
ubnid
2In0s
UoISISA
108loud
sdijoa
JIIE]

Bui
wuweibold
ylawos
adfy
yojew
2poo
JUETITETE]
wswnaop

piom

yoless
1nsal

123]j00

|dwexs

Xapul
Kem
way

18|
uonouny
Aelie
qefew
elep
njea

BABP'D
potpaw
elep
loi
ueajooq
1|nsal
81Aq

8po2

1X81U00
u
bey

ojne
yo1ed
sse[o
1daoxe
wnial
Buis
PIoA
]

Lodu

ub
‘loljuod S0
uoisieA | ‘ploipuy
1001 way
dojprep | Juoddeim
leisul | Jedyojew
Buaw ploA
uollAus | malasbew|
Jinbai MBIALSI|
ysnd wiu
nipioJpuea
puewwod juswbel)
nyolay pung
UOISIBA 1X3IU0D
Bueya 1599
BISUIPaARS
Lgam usod
J?1sew | malapub
W6 uonng
NWWOd | M3IAXEY
youeiq p!
uoysodal yualul
J1ed AlloR
qni MBIA
wab plolpue

OAN
‘pajusiio
w2l
oAl
19puas
MaIAIqR)
uut
19|
1018

a0|e

00}
jies
ouejsul
Ilea

apoa
108lqo
|oauod
uinial
MBIA
lea
uonaunj
poyiaL
SSEJ

jeulloy
Jowiely
awp
piea
wd
Kepoy
unouwe
uns
nujw

1duosgns

pe
an}
yasm
dwe)sawiy

aoud
uodal
LTI
mnoy
yluow
ieak
fep
aun
alep

S80IAI8S
gam ‘ide
buyy
uoAue
alls
njos
|dwexa
auwn

|6oob

|o1uod
ylawos
1de
y1oM

JsLnoop
dde
193UU02
ERJINED]
1s2]
qam
apo2
oljdde
fem

L1#91dol 91 #9idol §L #9idol 1 #9idol g1 #9idol ZL #oidol L1 #9idoL oL 4 9idoL | 60 4 o1doL | 80 4 d1doL | /0 4 2ldoL

uoyiAd
aseqelep ‘enel ‘Buy
108 129%8 ‘eqa wweiboid
Junod wnal yoea
18210 Bajul IETE]
}nsal 10113 19A3)
piay oloew uni
lapio eqa i
njea doo| alel
ap e[nwWIo} pe3Iy}
193|9% njea oljdde
obuow | }asysylom els
1onpo.d unoa nieis
1qe1 ased puoaas
dnoib JEN] oITET]
plodal ans qol
p! uonaun} ¥ooiq
Mol apod B
ejep wip JJows
seqeiep dwe 1122
11anb Jaquinu yse]
qpobuoLwu Bues ssao0.d
uwnjo9 pua awn

yseq
“duos
l1?ys
MOPUIM
yiom
fem
weus|ly
oyos
apoa

1do2

weiboid
[EE]
I°ys
19p|oj

loua
ndino
11010311p
yseq
Yed
1duos
puBLIWOD
aul|
el

uonewiue

‘abew|
eale
1eoy
ojouyd
inby
dew
apod

MBIA

awey)
injoid
wiue

uIpI002

susLwip
Jsod
03pIA
J0103A
utod
Xujew
1oid
8zIs
Bewn

$89 'Jwyy

#0019
|0J)u0d
ndu
be)
11
1duos

e

1pog
allis

1U31U0d
2dfy

p1
|y
1euns
dse
uLoj}
Ap
p!
ssejo
abed

uop

uoylAd

eanuayne ‘eael ‘Bul
‘funges wuweiboid

ol
LY
pua
abed
ssiwad
uiboj
1de

wesed
Juayine
JUBLIWOD
pieA

$59208
unoose
|1el
LIIE)
uoIssas
plomssed
uofoe
1s0d
19sn

ssaippe

luedwo?

dew

jooq
inguye

aseq

aled

uoslad
11
11obajen
1duasap

adfy
njea
1890|
ssejo
1adoid
p!
|apow
PRy
alweu

90 # 9idol 50 # 91doL 0 4 9idoL €0 4 9ldoL Z0 4 91doL L0 4 dldoL | 00 # ldoL

22

e Predicting Tags from input text

The 10 new questions from stack overflow website are manually tested on trained LDA model
for tag prediction to observe the performance of the model for unseen data. Below are the
questions and user provided tags from Stackoverflow along with the Tags generated by the LDA
model with their probabilities. The results for predicted Tags from the input text for one question
is shown below and the results for rest of the questions are attached in appendix.

Input question:
(https://stackoverflow.com/questions/2334712/how-do-i-update-from-a-select-in-sql-server)

Title: How do I UPDATE from a SELECT in SQL Server?

Body: In SQL Server, it is possible to insert rows into a table with an INSERT.. SELECT statement:
INSERT INTO Table (coll, col2, col3) SELECT coll, col2, col3 FROM other table WHERE sql = 'cool’
Is it also possible to update a table with SELECT? I have a temporary table containing the values and
would like to update another table using those values. Perhaps something like this:UPDATE Table SET
coll, col2 SELECT coll, col2 FROM other_table WHERE sql = 'cool' WHERE Table.id = other_table.id

Actual Tags: sql, sql-server, tsql, select
Predicted Tags: [(7, 0.9959697)]

Topic # 07 SQL, database

For all 10 questions the trained LDA model is able to predict most of the primary tags and the
most dominant Tag (with maximum probability) matches with the Tags provided by the user.
There are three topics which are assigned as programming topics because programming terms
and concepts are very common in most of the programming languages such as Java, C, Python
etc. Which leads to a general programming Tag for programming related questions.

Along with the manual testing, 2500 more questions from stack overflow dataset are tested for
tag suggestion. The dataset for optimised LDA model testing is taken from kaggle
(https://www.kaggle.com/vipulgote4/stackoverflow-dataset/data?select=valid.csv) Figure 14.
shows the results for tags suggested for 2500 questions for tags including sql, git, excel, shell etc.
Overall ~67% questions have the correct tags recommended. The overall accuracy is affected
because of the ‘android’ tag as it is difficult to distinguish between programming languages.

23

https://stackoverflow.com/questions/2334712/how-do-i-update-from-a-select-in-sql-server
https://www.kaggle.com/vipulgote4/stackoverflow-dataset/data?select=valid.csv

Actual Predicted

1250

1000

a 750
=
7
- 500
8
i
=]
k= 250
=
=]
@]
0
[~ x> > S & ~ NS L
$F ¢ & ¥ & & & F &£ 9
o > & ¥ & & ¢ ¢
& <F & &S & oy
o < v
Tags

Figure 14. Actual vs predicted Tags for optimized LDA model with unseen input text

4.2 Classification

The classification model for tag suggestions is a multi-label classification as each question can
be assigned to more than one tag. The multi-label classification is implemented using
One-vs-Rest technique and Classifier Chain technique.

4.2.1 Data Preprocessing for Classification

The initially cleaned and preprocessed data is used for implementation. The Tags column has
multiple values for each question and is categorical value, therefore it has to be converted to
vector representation. The multilabel binarizer is used for encoding tags column into
numeric/vector form. Multilabel binarizer converts the Tags column (which has upto 5 tags per
question) into a binary matrix in multilabel format which represents the presence of a particular
Tag. It adds columns, one for each Tag to the dataset with binary values 0 or 1. Then TF-IDF is
applied to extract and encode text features from the dataset. Then the data is split into training
and testing using train_test split method with 80% data as training and 20% as a test set. The
model would be built on training data and tested on remaining data.

24

4.2.2 ML Algorithm Implementation
The following ML algorithms are used for building classification models.

e Logistic Regression(LR) : The Logistic Regression is a supervised regression algorithm
which predicts the target variables and explains the relation between the dependent
variable and one or more independent variables. The dependent variable for Logistic
regression is categorical in nature. It is a statistical model which calculates the probability
of a result which can have a discrete set of classes and predicts the occurrence of the
event using logit function. Logistic regression is easy to implement, interpret and does
not require high computation power. Formula (1). Shows the mathematical representation
of predicted output for Logistic Regression.

e(a+ﬁxi)

y, = m I = 1,...,"

()

Where,

y = predicted output

o = the bias term

B = coefficient for single input value of x

e Random Forest(RF) : The Random Forest model fits decision tree classifiers on the
subsamples of the dataset and averages for better accuracy to provide a final prediction
model. It is a supervised learning algorithm with an ensemble of Decision Tree along
with Bagging method and can be used for both classification and regression. The
advantage of random forest is, it gives equal importance to all features in the data to
avoid any bias in the model. The independent trained random results in robust models. It
handles large samples of data and thousands of input features efficiently.

e Support Vector Machine(SVM) : The SVM is a supervised ML algorithm. It is used for
both classification and regression. Stochastic Gradient Descent(SGD) is an efficient
classifier for selective learning of linear classifiers such as SVM and Logistic Regression.
The SVM separates two classes by building hyperplane between two classes. The support
vector is defined as the closest sample from classes to the hyperplane and the separation
between two classes is identified by the distance between the closest sample to the
hyperplane between two classes. The goal of linear SVM is to maximize the margin and
have more distinct classes.

25

e Linear Support Vector Classification(SVC) : It is similar to SVM with linear kernel. It
has more flexibility in the parameters such as penalties, loss functions etc. to scale large
numbers of samples.. Linear SVC classifiers are faster and easy to implement.

The multi-label classification is implemented using One-vs-Rest technique and Classifier Chain
technique to transform into single label problem. One-vs-Rest technique is considered as
building multiple independent binary classifiers for each class(tag). The One-vs-Rest
classification technique is simple and easily interpretable but does not consider the correlations
between different classes. Classifier Chain technique takes into account the multiple label
correlations. This method is complex and requires high processing power. Classifier Chain
technique takes into account the multiple label correlations.

4.2.3 ML Model Evaluation

Performance of models based on Accuracy, Precision, Recall and F-measure, Hamming loss.
e Accuracy: The accuracy is the ratio of correctly predicted instances to the total instances.
The accuracy can be expressed as follows,

Accuracy = (TP+TN)/(TP+TN+FP+FN) (2)

e Precision: Precision is a measure which is represented as the ratio of correctly predicted
positive instances to the total predicted positive instances.

Precision = (TP)/(TP+FP) 3)

e Recall: Recall is defined as the ratio of correctly predicted positive instances to the all
instances in the actual class - Positive or ‘1°.

Recall = (TP)/(TP+FN) 4)

o F-measure: The F-measure is a most commonly used measure to evaluate the
performance of classification model The F-measure is a weighted average of the
precision and recall of the system and it can be given as,

F-measure = 2*(Precision* Recall)/(Precision+Recall) (5)

e Hamming Loss: Hamming-Loss is the fraction of labels that are incorrectly predicted,
i.e., the fraction of the wrong labels to the total number of labels. Its value lies between 0
and 1, lower being better.

26

The following results are obtained with default parameters of the models.

Table 7. Performance metrics for ML algorithms with OneVsRest

One vs Rest Accuracy Precision Recall F-1 Socre Hamming loss

SVM(SGD) 48.82% 90.15% 54.34% 66.75% 0.0264
LR 54.62% 84.46% 63.64% 72.88% 0.0236
LSVC 56.64% 81.94% 69.13% 74.84% 0.0235
RF 44.87% 89.18% 49.99% 61.95% 0.0286

Table 8. Performance metrics for ML algorithms with ClassifierChain

Classifier Chain Accuracy Precision Recall F-1 Socre Hamming loss

SVM(SGD) 52.54% 89.49% 58.15% 69.45% 0.0249
LR 58.02% 85.69% 66.85% 74.63% 0.0226
LSVC 58.88% 80.40% 71.60% 75.62% 0.0235
RF 46.42% 90.28% 53.78% 63.15% 0.0278

LinearSVC has shown overall better performance in both the multilabel classification techniques.
The LinearSVC is selected as a core algorithm for further improvement in the performance
metrics as it has flexible parameters for optimization.

4.2.4 Performance Tuning

To improve performance metrics of the finalized model limited Tags are considered. The top 15
Tags are considered for further analysis while performing performance tuning. Due to limitations
on time and resources(processing power) and also the need of running multiple models for
parameter tuning, top 15 Tags are selected. Previously TF-IDF was applied to extract and encode
text features from the dataset. The parameters ‘max_features’, ‘min_df’, ‘max_df” are varied to
ignore terms which are less significant while building the vocabulary based on the term
frequency across the corpus. Having more features in the data while building models can
increase processing time and calculation levels in the model. Without limitation on feature size
total 12,87,101 features were present after Tfidf vectorization. With the help of mentioned
parameters of TfidfVectorizer it is reduced to 1,00,000. The tuning parameters and its values are
given in Figure 15.

27

vectorizer X = TfidfVectorizer(analyzer = 'word',
min df=0.0005,
max_df = 1.0,
strip_accents = None,
encoding = 'utf-8',
ngram_range = (1, 1),
preprocessor=None,
token pattern=r"(7u)\S\5+",
max features=100000)

Figure 15. Parameter settings for TfidfVectorizer
e Tuning LinearSVC:

LinearSVC has the following parameter which can be tuned to obtain improvement in the
performance[13].

Penalty: The dataset containing a large number of features tends to create more complex models
and cause the problem of overfitting. The regularization technique adds penalty in order to create
less complex models so that model generalises and will not overfit. The L1 regularization shrinks
the coefficient of less important features to zero by eliminating some features. It works as feature
selection for large feature scenarios. L2 regularization reduces the coefficient of by adding
penalty which leads to less complex and unbiased models.

Regularization parameter: The strength of the regularization is inversely proportional to
regularization parameter.

The GridSearchCV is a python function used to estimate the best parameters by cross validation
over various parameters specified to be optimized. It makes hyperparameter tuning easy and
finds the best optimal parameter values for a given model. The cross validation parameter
enables k fold cross validation which splits the data and runs multiple iterations while generating
best models. Figure 16. shows the part of terminal output by GridSearchCV iteration with
different estimators and accuracy. Figure 17. shows best estimated parameters for linearSVC
generated as a result of GridSearchCV parameter estimation.

28

[cv]

estimator C=1.2915496650148839, estimator penalty=11 .

[CV] estimator (=1.2915496650148839, estimator penalty=11, score=0.759, total= 4.4min
[CV] estimator (C=1.2915496650148839, estimator penalty=11
[CV] estimator (=1.2915496650148839, estimator penalty=11, score=0.759, total= 4.5min
[CV] estimator (C=1.2915496650148839, estimator penalty=12
[cv] estimator (=1.2915496650148839, estimator penalty=12, score=8.753, total= 24.9s
[CV] estimator (C=1.2915496650148839, estimator penalty=12
[CV] estimator C(=1.2915496650148839, estimator penalty=12, score=0.751, total= 23.7s
[CV] estimator (=1.2915496650148839, estimator penalty=12
[CV] estimator_ C=1.2915496650148839, estimator_ penalty=12, score=0.753, total= 25.2s
[CV] estimator (C=1.2915496650148839, estimator penalty=12
[cV] estimator (=1.2915496650148839, estimator penalty=12, score=0.755, total= 24.9s
[cV] estimator (C=1.2915496650148839, estimator penalty=12
[CV] estimator (=1.2915496650148839, estimator penalty=12, score=0.756, total= 25.1s
[CV] estimator (=1.6681005372000588, estimator penalty=11
[CV] estimator C=1.6681005372000588, estimator penalty=1l1, score=0.753, total= 5.5min
[CV] estimator_ C=1.6681005372000588, estimator_ penalty=11
[CV] estimator C(=1.6681005372000588, estimator penalty=1l1, score=0.750, total= 5.5min
Figure 16. GridSearchCV parameter tuning output
estimator=OneVsRestClassifier(estimator=Linearsvc(c=1.0,
class weight=None,
dual=False,
fit_intercept=True,
intercept_scaling=1,
loss="'squared_hinge',
max iter=1000,
multi class='ovr',
penalty='12",
random state=1,
tol=0.0001,
verbose=0),
n_jobs=None),
iid='deprecated’', n_jobs=None,
param_grid={'estimator_ C': array([1. , 1.29154967, 1.66810054, 2.15443469, 2.7825594
3.59381366, 4.64158883, 5.9948425 , 7.74263683, 10. 1.

‘estimator__penalty': ['11', '12']1},

pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
scoring=make_scorer(accuracy_score), verbose=5)

Figure 17. Best estimated parameters for linearSVC using GridSearchCV

Average Accuracy

0.68
0.00

@ Average Accuracy : Penalty =L1 @&

2.00

Average Accuracy : Penalty = L2

6.00 8.00 10.00

c

Figure 18. GridSearchCV results for LinearSVC model

The GridSearchCV results shown in Figure 18. Represents average accuracy for different
Penalty types (L1/L2) over different Regularization parameter (C). The regularization parameter
is varied in the range of 0 to 10 to find the best accuracy score. The value of accuracy initially

29

increases upto C=1 and then gradually decreases. The maximum average accuracy of 0.763
is obtained at C = 1 by performing L1 regularization whereas maximum average accuracy of
0.758 is obtained at C = 1 by performing L2 regularization with LinearSVC model.

AUC ROC Curve:

AUC(Area under curve) - ROC (Receiver Operating Characteristics) is one of the metrics of
performance evaluation of classification models[14]. ROC represents a probability curve which
plots true positive rate (TPR) against false positive rate (FPR). AUC represents degree or
measure of separability between the classes. Higher AUC represents better the model with gretter
chance at predicting Os as Os and 1s as 1s. An excellent model has AUC equal to 1.

TPR =TP /(TP + FN)
FPR = FP/ (TN + FP)

Figure 19. shows the AUC-ROC curve with AUC for multiple labels (15 Tags) and averaged
AUC for linear SVC. The averaged AUC is ~0.92 which indicates that the trained classification
model has good distinction between the labels.

AUC ROC Curve

1.0 -

s
T -

'.‘._,.4,-{-‘-‘"“' -

= -

e ekt -

0.8 {i -

o
o
..

----- micro-average ROC curve (area = 0.92)

----- macro-average ROC curve (area = 0.91)

ROC curve of Label 0 (area = 0.96)

o ROC curve of Label 1 (area = 0.94)

- ROC curve of Label 2 (area = 0.93)

ROC curve of Label 3 (area =)
e ROC curve of Label 4 (area = 0.90)
)

)

)

)

)

True Positive Rate

o
=y
\\

\\
I
o
co
~

o ROC curve of Label 5 (area = 0.96

Pd ROC curve of Label 6 (area = 0.94

o ROC curve of Label 7 (area =

0.2 L ROC curve of Label 8 (area = 0.87
- ROC curve of Label 9 (area = 0.86

e ROC curve of Label 10 (area = 0.87)

o ROC curve of Label 11 (area = 0.91)

| e ROC curve of Label 12 (area = 0.95)

{ - ROC curve of Label 13 (area = 0.92)

0.0, ~ ROC curve of Label 14 (area = 0.93)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 19. AUC-ROC curve for LinearSVC model

30

Figure 20. represents each tag with its number of questions in actual(test) and correctly
predicted(pred) instances. For C#, 5714 out of 5892 questions are correctly labeled.

Number of questions

M number_of questions(y_test) [number_of questions(y_pred)

6000 5714
5226
4856
3915
4000 2653
2924 3043
2393
2051
2000 1524
1174
i
sig I
L LR KR . L L. L L. N o W0 'R '
O X x 2] > N 2] R & Q N AN
& & TP S & & A
& &N Q &
4 o
<

Tags

Figure 20. Number of questions vs Tags for test and predicted data

Figure 21. represents number of questions vs number of actual and predicted tag predictions.
34107 questions in the test dataset have only one tag associated with it. The classification model
has predicted 33210 questions with one tag. Similarly, 3738 questions in the test dataset have

two tags associated with it. The classification model has predicted 2956 questions with two tags.

Number of questions

W number_of_questions(y_test) ™ number_of_questions(y_pred)

35000 3410733210

30000
25000
20000
15000
10000

5000 2065
437 80 20 0

0 1 2 3 4

Number of Tags

Figure 21. Number of questions vs Number of Tags for test and predicted data

31

Table 9. shows the improved performance metrics values after parameter tuning of
penalty,regularization for Linear SVC with classifier chain technique. Compared to previous
results from Table 7, 8, Accuracy is improved by 36.9%, Recall is improved by 18.7%,
precision is increased by 13.2% and F1-score is improved by 16.3%.

Table 9. Performance metrics for LinearSVC after parameter tuning

Metric Accuracy Recall Precision F1 Score Hamming loss
LinearSVC with
L1 Penalty 80.55% 84.96% 91.08% 87.90% 0.01747
LinearSVC with
L2 Penalty 80.61% 85.01% 91.01% 87.91% 0.01750

5. Conclusion

In the development of automatic Tag suggestion system for StackOverflow various ML
techniques have been used. The unsupervised topic modeling approach - LDA is the one
approach proposed for auto Tag suggestion in this study. The baseline LDA model from gensim
is applied to the Question, Title and Body content of the selected dataset to generate various
topics with coherence score of 0.4752. Further feature extraction and hyperparameter tuning
indicated, model built with 18 topics yields maximum coherence score. The fine tuned model
with 18 topics, alpha (document-topic density) = 0.01 and eta (topic-word density) = 0.9
parameters generated coherence score of 0.6015. The ~26% of improvement of coherence score
led to more interpretable and distinct topics. The final model correctly predicted the primary
Tags with maximum probability for the unseen questions. The second approach proposed for this
study is performing classification using various ML algorithms. For baseline performance
measurement logistic regression, random forest, SVM and LinearSVC are used to discover the
best suited model. The model evaluation is performed using accuracy, precision, recall and
hamming loss. The fine tuning of the core algorithm, LinearSVC resulted in accuracy
improvement of ~36% and f-1 score improvement of ~16%. The LinearSVC with Penalty (L2),
Regularization parameter (C) =1 performed best with accuracy of 80.61%, f-1 score of 87.91%
and AUC-ROC of ~0.92.

32

References

[1] Anon. What are tags, and how should I use them? - Help Center. Retrieved February 10,
2020 from https://stackoverflow.com/help/tagging

[2] Adinarayanan, Smrithi Rekha & N, Divya & Sivakumar, P. (2014). A Hybrid Auto-tagging
System for StackOverflow Forum Questions. Retrieved February 10, 2020,
10.1145/2660859.2660970.

[3] Alrashedy, Kamel & Dharmaretnam, Dhanush & German, Daniel & Srinivasan, Venkatesh &
Gulliver, T. Aaron. (2018). Predicting the Programming Language of Questions and Snippets of
StackOverflow Using Natural Language Processing.

[4] Short L, Wong C, Zeng D. Tag recommendations in stackoverflow. San Francisco: Stanford
University, 2014, Google Scholar.

[5] Allamanis, Miltiadis & Sutton, Charles. (2013). Why, when, and what: Analyzing Stack
Overflow questions by topic, type, and code. Retrieved February 10, 2020, 53-56.
10.1109/MSR.2013.6624004.

[6] Stanley, Clayton, and Michael D. Byrne. "Predicting Tags for StackOverflow Posts."
Proceedings of ICCM. 2013.

[7]1Z. Yue, Y. Jiang, D. Pan, and Z. Luo. 2017. An End-to-end Tag-based Recommendation
System for Verbal Reasoning Questions. In Proceedings of the 10th EAI International
Conference on Simulation Tools and Techniques (SIMUTOOLS ’17). Association for
Computing Machinery, New York, NY, USA, 131-135.
DOI:https://doi.org/10.1145/3173519.3173530

[8] Stack Overflow. 2019. StackSample: 10% of Stack Overflow Q&A. (October 2019).
Retrieved February 10, 2020 from https://www.kaggle.com/stackoverflow/stacksample/data

[9] Anon. 2009. Stemming and lemmatization. (April 2009). Retrieved February 10, 2020 From
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization

[10] Anon. 2019. 5. Categorizing and Tagging Words. (September 2019). Retrieved February 10,
2020 from https://www.nltk.org/book/ch05.html

[11]Blei, David & Ng, Andrew & Jordan, Michael. (2001). Latent Dirichlet Allocation. The
Journal of Machine Learning Research. 3. 601-608.

[12] Anon. 2007. 1.12. Multiclass and multilabel algorithms. (2007). Retrieved February 10,
2020 from https://scikit-learn.org/stable/modules/multiclass.html

[13] Hsu, C. & Chang, C. & Lin, C.. (2008). A practical guide to support vector classification.
BJU International. 101. 1396-1400.

33

https://stackoverflow.com/help/tagging
https://doi.org/10.1145/3173519.3173530
https://www.kaggle.com/stackoverflow/stacksample/data
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization
https://www.nltk.org/book/ch05.html
https://scikit-learn.org/stable/modules/multiclass.html

[14] Markham, K. (2020, February 03). ROC curves and Area Under the Curve explained
(video). Retrieved November 08, 2020, from
https://www.dataschool.io/roc-curves-and-auc-explained/

Appendix

Input Text 1:

Title: Pivot Table filter not Changing to each value in Loop
Body: I've seen a lot of similar posts but none of them have been able to fix my issue with changing a
pivot table filter field. I'm trying to filter through a loop that takes each value in the list on ws2 and pastes
changes the FilterID to that value. However in all the different methods I've tried, setting it to a value,
setting it to a string, using "CurrentPage", none of them have worked or resulted in a 1004 error. My latest
effort is below. How can I get the "MatchFilter" to change based on the value in my loop below ?
The method below just gives a 1004 Application or object not defined error.
I also tried to add MatchFilter.Orientation = xIPageField but no success.
Sub Filter Test()
Dim ws1 As Worksheet
Set ws1 = Sheets("Order Groupings")
'"The match list is the list of unique Match IDs to filter through, pasting each in the filter
Dim ws2 As Worksheet
Set ws2 = Sheets("Match_List")
'Here we will paste the results from each optimizer run
Dim ws3 As Worksheet
Set ws3 = Sheets("Optimizer Results")
Dim pt As PivotTable
Set pt = ws1.PivotTables("Order Groupings")
Dim FilterID As String
Dim MatchFilter As PivotField
Set MatchFilter = pt.PivotFields("Match ID")
Dim numIDs As Integer
"This is the number of different match IDs
'Match count is set to J4 right now in the Match List tab
numIDs = ws2.Range("match _count").Value
'For loop to cycle through each Match ID
Fori=1 To numIDs

FilterID = ws2.Range("A4").Offset(i, 0).Value

"Trying to set the MatchFilter to the new value in FilterID

With MatchFilter

.ClearAllFilters
.CurrentPageName = FilterID

34

https://www.dataschool.io/roc-curves-and-auc-explained/
https://stackoverflow.com/questions/64528613/pivot-table-filter-not-changing-to-each-value-in-loop

End With
Next i
End Sub

Tags: excel, vba, pivot-table
° Predicted Tags after applying trained LDA model

[(1, 0.08263205), (6, 0.3817161), (7, 0.08705216), (11, 0.017354155), (14, 0.34400588), (16,
0.08579699)]

Topic # 01 security, authentication
Topic # 06 vba, excel

Topic # 07 SQL, database

Topic # 11 Android, os

Topic # 14 programming

Topic # 16 excel, spreadsheet
Input Text 2:

https://stackoverflow.com/questions/64527950/not-able-to-put-a-condition-in-shell-script

Title: Not able to put a condition in shell script

Body: I am new to shell scripting I have been trying to create a shell script which runs on every month
end. But the script doesn't run on Sundays and Mondays. Only Tues-Sat. So if the month end falls on sun
or mon, it will run 28th or 29th. Eg- if a month is of 30 days then ideally script should run on 30. But if
30th falls on Sunday then the script should run on 29th.

Tags: bash, shell, sh

) Predicted Tags after applying trained LDA model
[(4, 0.43657923), (6, 0.15265396), (9, 0.402516)]

Topic # 04 shell script, bash
Topic # 06 vba, excel

Topic # 09 time frame/ format
Input Text 3:

https://stackoverflow.com/questions/63192324/djoser-permission-classes-issue

Title: Djoser Permission Classes Issue

35

https://stackoverflow.com/questions/64527950/not-able-to-put-a-condition-in-shell-script
https://stackoverflow.com/questions/63192324/djoser-permission-classes-issue

Body: I am trying make an app with djoser as my third party package. I have made a bunch of
@api_views along with it and i wanted to apply some permissions as well. I have already done
IsAuthenticated but am unable to update custom permission for djoser:

'user': ['djoser.permissions.CurrentUserOrAdminOrReadOnly']

I have used PERMISSION instead of DEFAULT PERMISSION CLASSES in djoser list.

I would like to be able to get a token and only able to change that users data and not someone elses but till
now it hasnt worked. i can update or post any type of data of different user with a valid token.

Tags: django, authentication, permissions, customization

° Predicted Tags after applying trained LDA model
[(1,0.5727031), (2, 0.062216956), (8, 0.15459637), (14, 0.1453297), (15, 0.059292734)]

Topic # 01 security, authentication
Topic # 02 html, css

Topic # 08 api, web services

Topic # 14 programming

Topic # 15 IDE, eclipse

Input Text 4:

https://stackoverflow.com/questions/64402280/how-do-i-differentiate-enabled-and-disabled-tracks-with-s
potify-web-api

Title: How do i differentiate enabled and disabled tracks with Spotify Web Api?

Body: I'm working with the Spotify Web Api in C# and [want to find out which tracks of my playlists are
disabled. I know how to get all the FullTrack-Objects from my playlists, but I don't know which property
tells me whether the track is disabled or enabled. Here's the link to the FullTrack-Object documentation:
https://developer.spotify.com/documentation/web-api/reference/tracks/get-track/

In the following picture you see what i mean with disabled/enabled tracks: Disabled/enabled Track
example

The disabled track 'Get Up' is greyed out and I can't play it. The enabled track 'Glitch Gang' is not greyed
out and playable. Note: Both tracks are not local!

A FullTrack-Object has the property is_playable... But that seems to be always null no matter what.

Then I tried to identify disabled tracks according to the available markets property. I thought those would
be null or empty when the track is disabled, but that wasn't the case. Tracks that were enabled sometimes
also had an empty array of available markets.

So I'm stuck here... I don't know how or if it's even possible to differentiate disabled/enabled tracks with
the Spotify Web Api. Does Anyone have a answer to that?

Tags: api, web, spotify

° Predicted Tags after applying trained LDA model
[(0,0.16001536), (5, 0.10698558), (8, 0.62986875), (14, 0.036733307), (17, 0.06364164)]

36

https://stackoverflow.com/questions/64402280/how-do-i-differentiate-enabled-and-disabled-tracks-with-spotify-web-api
https://stackoverflow.com/questions/64402280/how-do-i-differentiate-enabled-and-disabled-tracks-with-spotify-web-api

Topic # 00 java, python

Topic # 05 java, python

Topic # 08 api, web services
Topic # 14 programming

Topic # 17 client-server, networking
Input Text 5:

https://stackoverflow.com/questions/64530635/get-resource-id-from-multiple-imageviews-and-assign-dra

wable-to-them

Title: Get Resource Id from multiple ImageViews and assign drawable to them
Body: My app has a GridLayout and 60 ImageViews on it. I want to assign a drawable to 25 cells of grid
layout. for that purpose i have an array with 25 random numbers.
then i defined a hashmap that each item is one of the image views:
private HashMap<Integer, Integer> imageViews = new HashMap<>();
imageViews.put(0, R.id.imageView1);
imageViews.put(59, R.id.imageView60);
and put 60 imgageviews in hashmap ... 0 is id for first imageview. and set drawable to cells with this
method:
private void setBombDrawable(){
HashMap<Integer, Integer> map = mImageViewsMap.getlmageViews();
for (int tag : randomBombArray) {
int id = map.get(tag);
ImageView imageView = findViewByld(id);
imageView.setlmageResource(R.drawable.exploded);
h
}

code runs without problem, but if there is any simpler way for getting imageviews id or tag from grid
layout instead of 60 lines of code?

Tags: android, hashmap, imageview, drawable, grid-layout
° Predicted Tags after applying trained LDA model

[(3, 0.07239184), (6, 0.13976413), (11, 0.47108233), (13, 0.12926328), (14, 0.1026138), (16,
0.08239396)]

Topic # 03 image, animation
Topic # 06 vba, excel

Topic # 11 Android, os
Topic # 13 C, Java

37

https://stackoverflow.com/questions/64530635/get-resource-id-from-multiple-imageviews-and-assign-drawable-to-them
https://stackoverflow.com/questions/64530635/get-resource-id-from-multiple-imageviews-and-assign-drawable-to-them

Topic # 14 programming

Topic# 16 excel, spreadsheet

Input Text 6:
https://stackoverflow.com/questions/309424/how-do-i-read-convert-an-inputstream-into-a-string-in-java

Title: 'How do [read / convert an InputStream into a String in Java?

Body: If you have a java.io.InputStream object, how should you process that object and produce a String?
Suppose I have an InputStream that contains text data, and I want to convert it to a String, so for example
I can write that to a log file. What is the easiest way to take the InputStream and convert it to a String?'

Tags: Java, string, io, stream, inputstream

° Predicted Tags after applying trained LDA model
[(5,0.15902096), (13, 0.3767766), (14, 0.45493168)]

Topic # 05 java, python
Topic # 13 C, Java

Topic # 14 programming
Input text 7:

https://stackoverflow.com/questions/2610497/change-an-html5-inputs-placeholder-color-with-css

Title: Change an HTMLS input's placeholder color with CSS
Body: Chrome supports the placeholder attribute on input[type=text] elements (others probably do too).
But the following CSS doesn't do anything to the placeholder's value:
input[placeholder], [placeholder], *[placeholder] {
color: red !important; }
<input type="text" placeholder="Value">
Expand snippet
Value will still remain grey instead of red.
Is there a way to change the color of the placeholder text?

Tags: css, html, placeholder, html-input

) Predicted Tags after applying trained LDA model
[(2, 0.5579981), (14, 0.19046639), (16, 0.2470147)]

Topic # 02 html, css
Topic # 14 programming
Topic # 16 excel, spreadsheet

38

https://stackoverflow.com/questions/309424/how-do-i-read-convert-an-inputstream-into-a-string-in-java
https://stackoverflow.com/questions/2610497/change-an-html5-inputs-placeholder-color-with-css

Input Text 8:

https://stackoverflow.com/questions/927358/how-do-i-undo-the-most-recent-local-commits-in-git

Title: How do I undo the most recent local commits in Git?
Body: I accidentally committed the wrong files to Git, but I haven't pushed the commit to the server yet.
How can I undo those commits from the local repository?

Tags: git, version-control, git-commit, undo

° Predicted Tags after applying trained LDA model
[(4,0.08792023), (12, 0.89251983)]

Topic # 04 shell script, bash
Topic # 12 version control, git
Input Text 9:

https://stackoverflow.com/questions/1274057/how-to-make-git-forget-about-a-file-that-was-tracked-but-is
-now-in-gitignore

Title: How to make Git “forget” about a file that was tracked but is now in .gitignore?

Body: There is a file that was being tracked by git, but now the file is on the .gitignore list.

However, that file keeps showing up in git status after it's edited. How do you force git to completely
forget about it?

Tags: git, gitignore, git-rm

° Predicted Tags after applying trained LDA model
[(4, 0.28245988), (12, 0.7044038)]

Topic # 04 shell script, bash

Topic # 12 version control, git

39

https://stackoverflow.com/questions/927358/how-do-i-undo-the-most-recent-local-commits-in-git
https://stackoverflow.com/questions/1274057/how-to-make-git-forget-about-a-file-that-was-tracked-but-is-now-in-gitignore
https://stackoverflow.com/questions/1274057/how-to-make-git-forget-about-a-file-that-was-tracked-but-is-now-in-gitignore

